第 1 章 绪 论 1. 1 深度学习的前世今生 1. 2 模型复杂度的提升 1. 3 深度学习的名人轶事 第 2 章 深度学习中的线性代数 2. 1 标量、 向量、 矩阵与张量 2. 2 矩阵的运算 2. 3 单位矩阵与逆矩阵 2. 4 线性相关、 生成子空间和范数 2. 5 一些特殊类型的矩阵 2. 6 特征分解 2. 7 奇异值分解 2. 8 Moore-Penrose 伪逆 2. 9 迹运算 2. 10 行列式 2. 11 例子: 主成分分析 第 3 章 概率与信息论 3. 1 为什么要使用概率 3. 2 随机变量 3. 3 概率分布 3. 4 边缘概率 3. 5 条件概率 3. 6 条件概率的链式法则 3. 7 条件独立性 3. 8 期望、 方差和协方差 3. 9 常用概率分布 3. 10 常用函数及性质3. 11 贝叶斯规则 3. 12 信息论中的交叉熵 3. 13 结构化概率模型 第 4 章 数值计算 4. 1 上溢和下溢 4. 2 病态条件 4. 3 基于梯度的优化方法 4. 4 约束优化 4. 5 实例: 线性最小二乘 第 5 章 机器学习基础 5. 1 什么是机器学习算法 5. 2 模型性能的度量 5. 3 过拟合与欠拟合 5. 4 超参数和交叉验证 5. 5 最大似然估计 5. 6 什么是随机梯度下降 5. 7 贝叶斯统计 5. 8 监督学习算法 5. 9 无监督学习算法 5. 10 促使深度学习发展的挑战 第 6 章 深度前馈网络 6. 1 什么是 “前馈” 6. 2 隐藏层 6. 3 输出单元 6. 4 万能近似性质 6. 5 反向传播 第 7 章 深度学习中的正则化 7. 1 参数范数惩罚 7. 2 数据集增强 7. 3 噪声鲁棒性 7. 4 半监督学习 7. 5 多任务学习 7. 6 提前终止 7. 7 参数绑定和参数共享 7. 8 稀疏表示 7. 9 Bagging 和其他集成方法 7. 10 Dropout 7. 11 对抗训练 第 8 章 深度模型中的优化 8. 1 学习和纯优化有什么不同 8. 2 小批量算法 8. 3 基本算法 8. 4 参数初始化策略 8. 5 自适应学习率算法 8. 6 二阶近似方法 8. 7 一些优化策略 第 9 章 卷积神经网络 9. 1 卷积运算 9. 2 为什么要使用卷积运算 9. 3 池化 9. 4 基本卷积函数的变体 9. 5 卷积核的初始化 第 10 章 循环神经网络 10. 1 展开计算图 10. 2 循环神经网络 10. 3 双向 RNN 10. 4 基于编码-解码的序列到序列架构 10. 5 深度循环网络 10. 6 递归神经网络 10. 7 长短期记忆网络 10. 8 门控循环单元 10. 9 截断梯度 第 11 章 实践方法论 11. 1 设计流程 11. 2 更多的性能度量方法 11. 3 默认的基准模型 11. 4 要不要收集更多数据 11. 5 超参数的调节 11. 6 模型调试的重要性 第 12 章 应 用 12. 1 大规模深度学习 12. 2 计算机视觉中的预处理 12. 3 语音识别 12. 4 自然语言处理 12. 5 推荐系统 12. 6 知识问答系统 第 13 章 初识大语言模型 13. 1 大语言模型的背景 13. 2 大语言模型的重要性 13. 3 大语言模型的应用场景 13. 4 大语言模型和传统方法的区别 第 14 章 大语言模型原理 14. 1 Transformer 架构 14. 2 预训练 14. 3 微调 14. 4 自回归训练 14. 5 掩码语言模型 第 15 章 常见的大语言模型 15. 1 GPT 系列模型 15. 2 BERT 15. 3 XLNet 第 16 章 大语言模型应用———自然语言生成 16. 1 自动文本生成 16. 2 对话系统和聊天机器人 16. 3 代码和技术文档生成 16. 4 创意内容生成 16. 5 国产优秀大语言模型———文心一言 16. 6 国产优秀大语言模型———讯飞星火认知大模型 后 记
深度学习是一个既令人着迷又略显神秘的领域, 它涉及数学、 机器学习、 人工智能和大量的数据, 并改变着我们的世界。 尽管听起来复杂, 但它并不是一座高不可攀的山峰, 本书将作为你的向导, 帮助你每一步都迈得稳当且有趣。 这本书将用通俗易懂的语言探讨深度学习的核心概念。 我们将揭开数学的神秘面纱, 解释机器学习的基础知识, 然后深入研究深度学习的工作原理; 我们还将了解神经网络是如何模拟人脑工作的, 以及它如何在图像识别、 自然语言处理等领域大放异彩。 为了帮助你更好地理解这些概念, 我们将使用有趣的插画来说明抽象的知识。 这些插画将使复杂的概念变得鲜活和易于理解, 就像魔法一样。 而当我们深入讨论大语言模型时, 你将了解到它如何在自然语言生成、 智能助手和内容创作方面发挥关键作用。 你将明白这类模型如何理解并生成人类语言, 以及如何在各行各业中引领技术的创新浪潮。 在这个信息爆炸的时代, 深度学习是我们理解、 处理和利用数据的强大工具之一。 它已经在医疗诊断、 自动驾驶汽车、 语音识别、 虚拟现实等众多领域取得了惊人的突破, 而 这仅仅是开始。 让我们一起启程, 开始这段探索之旅吧。 在这个旅程中, 本书将始终在你 身边, 为你破解难题, 激发灵感, 让你深入了解深度学习的精髓。 深度学习的精髓在于它的学习方式, 它能够从数据中提取规律和特征, 然后做出智能决策。 这种学习方式是受人类大脑的启发, 但却比我们的大脑更快、 更强大。 通过本书, 你将深入了解这种令人惊叹的学习机制, 以及它如何塑造了我们的数字时代。 深度学习也是一个充满活力和创新的领域。 每一天, 都有新的发现和应用不断涌现, 创造出改变世界的机会。 作为读者, 你将有机会深入参与到这一变革之中, 不仅可以应用深度学习解决实际问题, 还可以成为创新的推动者。 本书努力使复杂的概念变得清晰易懂, 使抽象的数学变得有趣。 无论你是一位学生、一位教育者、 一位科技爱好者, 还是一位企业家, 你都能从中受益, 深刻理解深度学习的精髓, 将其应用到你的领域。 如何使用本书进行练习 为了帮助读者更好地理解本书涉及的原理, 并且能够动手进行代码的实操练习, 本书会在每个知识点后安排 【原理输出】 和 【实操练习】 环节。 【原理输出】 的主要目的是, 让读者可以在 ChatGPT 的帮助下, 反复理解知识点的原理———这样可以进一步加深大家的印象; 而 【实操练习】 这个环节, 可以让大家自己动手运行 Python 代码, 这有助于大家在理解原理的同时, 学会如何用代码进行实现。
以项目实践为引导,通过有趣的AI插画辅助学习增加学习趣味性,通过【原理输出】和【实操练习】助力学与练,从而解锁人工智能与大规模语言模型精髓。
段小手,曾供职于百度、敦煌网、慧聪网、方正集团等知名IT企业。有多年的科技项目管理及开发经验。负责的项目曾获得“国家发改委电子商务示范项目”“中关村现代服务业试点项目”“北京市信息化基础设施提升专项”“北京市外贸公共服务平台”等多项政策支持。著有《用ChatGPT轻松玩转机器学习与深度学习》《深入浅出Python量化交易实战》等著作,在与云南省公安厅合作期间,使用机器学习算法有效将某类案件发案率大幅降低。
本书以通俗易懂的语言和有趣的插画来解释深度学习中的概念和方法, 生动形象的插图更容易帮助读者理解和记忆。 同时, 书中指导读者将自己的理解制作成短视频, 以加强学习效果。 另外, 书中还指导读者在 Colab 平台上进行实践。 本书内容全面, 从基础的神经网络、 卷积神经网络、 循环神经网络等入门知识, 到深度学习的应用领域如计算机视觉、 自然语言处理等高级主题都有涉及。 本书具有丰富的趣味性、 互动性和实践性, 可以帮助读者更好地理解深度学习知识, 并为未来的职业发展打下坚实的基础。